
Polonius: A Wizard of Oz Interface for HRI Experiments

David V. Lu*

davidlu@wustl.edu
William D. Smart*†

wds@cse.wustl.edu
*Washington University †Willow Garage

One Brookings Drive 68 Willow Road
St. Louis, MO 63130 Menlo Park, CA 94025

United States United States

ABSTRACT
Polonius is a robot control interface designed for running
Wizard of Oz style experiments. It is designed to be easy
enough to be used by the non-programmer collaborators of
roboticists. The program acts as an intermediary between
the robot and a wizard interacting with a GUI based on
a pre-defined script. Polonius also eliminates the need for
coding the video after experiments by integrating a robust
logging system.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Human-Robot Interaction; Graphical User In-
terface

1. MOTIVATION
Wizard of Oz interfaces [4] allow experiments to be per-

formed using behaviors not yet implemented. In a Wizard
of Oz interface, the robot’s actions are controlled by a “man
behind the curtain” who acts as a puppeteer. This facili-
tates the interaction in two key ways. First, it allows for
the intelligence of the system, i.e. the decision making, to
be delegated to the human, who is more often capable of
making complex decisions more quickly than an algorithmic
decision maker. Second, it often allows the wizard to act in
lieu of or in conjunction with the robot’s sensors, eliminat-
ing the need for complex sensor interpretation algorithms to
try to determine what the human has done.

While many people use Wizard of Oz interfaces in hu-
man robot interaction (HRI) research, there are currently
no frameworks systematized for running such experiments.
Other fields have developed frameworks with some success,
such as SUEDE [5] for prototyping voice based interfaces.
Also, since the field of HRI thrives on collaborations with
non-programmers, there is a need to create tools which offer
a high level interface to controlling and re-tasking robots.

Furthermore, one of the most tedious parts of running ex-
periments is coding the video and other sensor streams after
the fact. Most experiments need to measure some compo-
nent of the human’s reactions to the robot, including how
they reacted and when. The process of gathering this infor-
mation usually entails watching a video of the interaction
after the experiment is over and painstakingly recording the

Copyright is held by the author/owner(s).
HRI’11, March 6–9, 2011, Lausanne, Switzerland.
ACM 978-1-4503-0561-7/11/03.

Figure 1: Program Flow

details. This is an expensive process, both in terms of money
and time.

In addition to HRI experiments, there are many other
scenarios where a robot must perform a set of scripted ac-
tions with a human in the control loop, such as demos or
other public exhibitions. One case in an emerging field is
controlling a robot on the stage in a play. There are numer-
ous examples of robots interacting with humans on stage,
performing with their human counterparts [3, 1, 2]. In this
context, it is often much easier to have a human control the
robot than to program the robot to act autonomously. Ad-
ditionally, using a Wizard of Oz interface has no ill affect on
the audience, since the control happens quite literally from
behind the curtain.

Polonius is a front-end interface to control robots in an
easy, scriptable manner and to simultaneously code the in-
teraction during the actual interaction. Polonius is named
for the wise character who hides behind a curtain in Act V
of the Shakespeare tragedy Hamlet [8].

2. FRAMEWORK
Polonius is built using the ROS Framework [6], allowing

for a high level of modularity and adaptability for many dif-
ferent types of robots. Specifically, the smach and actionlib

libraries1 are used in the back-end of Polonius.
The core program flow is shown in Figure 1. Prior to

the experiment, the script is developed, defining all of the
possible actions for the human and the robot in the form
of a finite state machine (FSM). During the interaction, the
wizard is presented with different actions, which they can
command the robot to do, and with different labels, which
they can select to record what the user is doing. These
options are defined by the script and by the current state of

1http://www.ros.org/wiki/smach
http://www.ros.org/wiki/actionlib

http://www.ros.org/wiki/smach
http://www.ros.org/wiki/actionlib


child: {start: Child starts gesture, label: Child Gesture,
end: {Gesture A: doA, Gesture B: doB,

Gesture C: doC, Finish: wave}}
doA: {start: 2, label: Gesture A, action: Pose(0), end: child}
doB: {start: 2, label: Gesture B, action: Pose(1), end: child}
doC: {start: 2, label: Gesture C, action: Pose(2), end: child}
wave: {label: Wave Goodbye, action: Wave() }

Figure 2: Gesture Imitation Game Script

the FSM. After the interaction, the labels and actions can
be viewed through the log file.

To better understand how the system is used, consider
the Wizard of Oz interface used in Robins et al.’s Gesture
Imitation Game experiment [7]. The core of the experiment
had a humanoid robot imitating gestures made by a child.
The child would make one of the three gestures that the
robot could make, and then the robot would make the same
gesture, and then the process would repeat, ending when the
robot waved goodbye. Researchers were curious whether a
two second delay between the child’s gesture and the robot’s
gesture would effect the child’s timing. A script for such
an experiment is show in Figure 2, and we use it here to
illustrate the capabilities of Polonius.

The script is specified in a text file, using a high-level
language, representing a finite state machine. Here, we de-
fine five states: the first for the child’s action, three for the
robot doing one of the three gestures, and one for the con-
cluding gesture. Formulating the script as a finite state ma-
chine allows for linear, branching and looping scripts. Each
state is defined by up to five properties: identifier, label, ac-
tion, start, and end. The identifier is the name of the state
(child, doA...), used internally, and the label is a more
verbose description of what the state is, used in the GUI
and the labels.

The action defines what commands to give the robot. The
actionlib library provides a framework for defining and im-
plementing pre-emptable, parameterized tasks. In our ex-
ample we use Pose(x) to represent a command that moves
the robot to the pose for the xth gesture. We could have
also specified multiple actions to be done in parallel. If no
action is given, then the action is considered to be a human
action, where the robot just waits for the wizard to mark
the human’s action as finished.

The start and end properties define when to move into and
out of each state. If the start is defined as a number as in
state doA, the FSM waits that many seconds before starting
the action. However, if the action should not start automat-
ically, a cue can be defined, such that the wizard will wait
for the action to happen (the cue), and then press a button
when it happens, allowing for the action to proceed. The
state child defines when the child is doing a gesture, and
starts when the wizard clicks a button on the GUI labeled
“Child starts gesture.” The FSM will then leave the state
either automatically, or if the end property is defined, when
the wizard clicks on the button. If multiple ends are defined,
then the next state is defined by which button the wizard
clicks. In the child state, if the child does Gesture A, then
the wizard would click the corresponding button, prompting
the FSM to go into the doA state and do Gesture A back.

Once the interaction is complete, labels marking what
buttons the wizard pressed and what actions were performed
are saved for later processing, either in a text file or using

ROS’s built-in logging utility. This allows researchers to ex-
amine the timings of the starts of the child’s actions, which
actions were performed, and how long of a pause there was
between the robot’s gesture and the child’s next gesture, all
without coding the video and minimal extra work on behalf
of the wizard.

3. CONCLUSION
We have created a flexible framework for running robots

through a scripted Wizard of Oz style interaction, useful for
HRI experiments and other interactions. The system has
already been used to run a dramatic presentation involv-
ing a robot and a human actor at Washington University,
and the code has been released to the ROS community2. In
the future, we plan to investigate the efficacy of using Polo-
nius vs. coding the video by hand, which we predict will
show that Polonius presents an easy interface for controlling
robots while simultaneously coding the actions in a timely
and accurate way.

4. THANKS
This work as supported by NSF award IIS 0917199.

5. REFERENCES
[1] BBC News. Actor robots take japanese stage. 26 Nov.

2008. http://news.bbc.co.uk/2/hi/asia-pacific
/7749932.stm.

[2] B. Brantley. In robot world she turns more Hedda than
Hedda. The New York Times, 18 Feb. 2006.
http://theater2.nytimes.com/2006/02/18/

theater/reviews/18hedd.html.

[3] G. Hoffman, R. Kubat, and C. Breazeal. A hybrid
control system for puppeteering a live robotic stage
actor. In Proceedings of the 17th International
Symposium on Robot and Human Interactive
Communication (RoMan’08), pages 354–359, 2008.

[4] J. Kelley. An iterative design methodology for
user-friendly natural language office information
applications. ACM Transactions on Information
Systems (TOIS), 2(1):26–41, 1984.

[5] S. Klemmer, A. Sinha, J. Chen, J. Landay,
N. Aboobaker, and A. Wang. Suede: a Wizard of Oz
prototyping tool for speech user interfaces. In
Proceedings of the 13th annual ACM symposium on
User interface software and technology, pages 1–10.
ACM, 2000.

[6] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng. ROS: an
open-source Robot Operating System. In International
Conference on Robotics and Automation, 2009.

[7] B. Robins, K. Dautenhahn, R. Te Boekhorst, and
C. Nehaniv. Behaviour delay and robot expressiveness
in child-robot interactions: a user study on interaction
kinesics. In Proceedings of the 3rd ACM/IEEE
international conference on Human robot interaction,
pages 17–24. ACM, 2008.

[8] W. Shakespeare and A. Verity. The Tragedy of Hamlet.
University Press, 1904.

2http://www.ros.org/wiki/polonius

http://www.ros.org/wiki/polonius

	Motivation
	Framework
	Conclusion
	Thanks
	References

