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Abstract. Human-Robot Interaction literature frequently uses Gaus-
sian distributions within navigation costmaps to model proxemic con-
straints around humans. While it has proven to be effective in several
cases, this approach is often hard to tune to get the desired behavior,
often because of unforeseen interactions between different elements in
the costmap. There is, as far as we are aware, no general strategy in the
literature for how to predictably use this approach.
In this paper, we describe how the parameters for the soft constraints can
affect the robot’s planned paths, and what constraints on the parameters
can be introduced in order to achieve certain behaviors. In particular, we
show the complex interactions between the Gaussian’s parameters and
elements of the path planning algorithms, and how undesirable behavior
can result from configurations exceeding certain ratios. There properties
are explored using mathematical models of the paths and two sets of
tests: the first using simulated costmaps, and the second using live data
in conjunction with the ROS Navigation algorithms.

1 Introduction

Navigation is one of the fundamental tasks in mobile robotics. For robots with
reasonable dynamics and operating speeds in indoor environments, efficient collision-
free navigation is considered a solved problem from a practical standpoint. How-
ever, when humans are introduced into the environment, we must treat them
differently than static obstacles by respecting their social norms, thus causing
navigation to become more difficult.

Most path-planners in use today use a discretized costmap, where values in
the costmap cells correspond to the “badness” of the robot being in that position.
The path-planner then generates a path from the start position to the end that
has the minimum accumulated cost. This will cause the robot, in many cases,
to closely approach obstacles. While this is fine for furniture, it is not socially
acceptable with people.

Using the full range of values in the costmap is vital for representing many
social constraints for navigation algorithms. They represent general preferences
or guidelines rather than hard and fast rules. As Kirby et al. [6] observed, “Hu-
man social conventions are tendencies, rather than strict rules,” This approach
discourages a subset of paths without disallowing them outright.
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In practice, creating the desired behavior around people is surprisingly diffi-
cult. While previous researchers have tuned their parameters to create working
configurations, there exists no general guide for how to do this to effect a specific
change in robot behavior. Furthermore, as we show below, the resulting behavior
is not always intuitive from a consideration of the individual costmap elements.

2 Related Work

Methods for modeling social preferences in costmaps have existed for some time.
Most uses of soft constraints in costmaps have been for representing a person’s
personal space. Dautenhahn et al. [4] constructed recommendations for planning
motions where humans would be comfortable based on live HRI trials, taking
proximity, visibility and hidden zones into consideration. These were formulated
into a costmap system by Sisbot et al. [13], creating a Gaussian based “human
aware motion planner.” Kirby et al. [6] used an algorithm that in addition to
minimizing path distance and avoiding obstacles, modeled proxemics and behav-
iors like passing on the right into the costmap, also using Gaussians. Work by
Svenstrup et al. [14] created even more complicated models of personal space,
integrating a mixture of four different constraints modeled as Gaussians. [15]
expanded this work to maneuver among a field of multiple people while moving
toward a goal. Soft constraints are occasionally used for other fields like au-
tonomous vehicles. Ferguson and Likhachev [5] used large constant valued areas
to favor driving on the right side of the road and to avoid curbs. Among the
latest work in this field, Mainprice et al. [9] have expanded their original model
to a three dimensional costmap in order to control positioning during hand off
tasks, taking safety, visibility and the human’s arm comfort into consideration.
Scandolo and Fraichard [12] have also created a complex model that included
proxemic, visibility and motion models as Gaussians, and “interaction areas” as
constants. Lu and Smart [8] also have modified robot behavior using intermediate
costmap values to improve the efficiency of human task completion.

Most of the obstacles added to the costmaps follow Gaussian distributions or
constant values (with the minor exception of the representation of the intimate
personal space in the work by Scandolo and Fraichard [12]). Little to no discus-
sion is given about how the authors of the previous works found the parameters
that worked best with their system.

The problem of designing costmaps that result in human-like behavior bears
some similarity to inverse reinforcement learning (IRL) [11, 1, 2]. In IRL, the
goal is to induce an immediate reward function based on example behaviors that
will result in a similar final policy. In our setting, this would involve recording
a number of human trajectories, determining a suitable set of features to serve
as a state space (in a similar manner, perhaps, to [7]), then applying IRL algo-
rithms to learn the functions that would create the local costmap based on these
features. While an approach like this offers the promise of automatic costmap
construction, it depends critically on the example trajectories and on a good
feature set being selected.
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3 Problem Statement

Each planned path depends on two separate components: the costmap and the
planning algorithm. The costmap is represented by a two-dimensional grid, where
each grid cell has a value f(x, y). Values above some predefined threshold are
designated as “lethal” values which will result in collisions. Standard algorithms
such as Dijkstra’s and A* are typically used as the path planner. However, if the
total cost of a path is defined as the cost of the cells the path traverses alone,
then the resulting path will be a very long path that avoids any cost. To avoid
this scenario, wavefront planners are often used, which add a constant value, P ,
to each cell traversed to create a gradient from start to finish[3].

Formally, we define C(p) as the total cost of the path p (including both
the costmap costs and the path planning costs). Finding the best path involves
minimizing the cost over all possible paths.

min
∀pathp

C(p) = min
∀pathp

∑
(x,y)∈p

[
f(x, y) + P

]
(1)

This definition for path cost assumes that each step in the path moves to
another grid cell exactly 1 unit away, implying each cell is connected to its four
immediate neighbors. We use this assumption throughout this paper, although
it is possible to generalize it, for example, to also include diagonal moves.

For purposes of this paper, let us further refine the problem to reduce the
number of cases we must consider. First, without loss of generality, let us consider
paths that go from (−n, 0) to (n, 0). We further assume that there are no lethal
cells in our costmap, since path planning algorithms already do a fine job of
avoiding these.

In addition to the actual planning problem, there is also the parameter tuning
problem. We would like to be able to design robot behavior from a high level and
not need to fiddle with the parameters endlessly to find the perfect balance for
the desired behavior. One goal of this is to find functions in which the parameter
space is either intuitive or limited to only the best possible values.

The interplay between the values in the costmap and the path planning
constant turns out to be crucial for determining the course of the planned path.
The duality of optimizing for path length or for path cost results in a continuum
of different paths that could be considered optimal depending on the weighting
of the two sides.

4 Mathematical Properties of Gaussian Obstacles

Our analysis focuses on the frequently-employed two-dimensional Gaussian dis-
tribution, defined as

f(x, y) = A exp

(
−x

2 + y2

2σ2

)
(2)
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(a) The Bracket Shape (b) Gaussian Cost Function

Fig. 1: Types of Paths - In 1a, an optimal bracket-shaped path in blue and a
suboptimal path in yellow. In 1b, the discontinuity of optimal paths between
P = 55 and P = 56.

The cost in each cell under the Gaussian depends on both the amplitude,
A, and the variance, σ. One key feature of the Gaussian function (and all other
monotonically decreasing functions) is that the optimal path is always bracket-
shaped: from (−n, 0) to (−n, ŷ) to (n, ŷ) to (n, 0) for some ŷ. The proof of this is
elided for space, but centers on the fact that all paths that reach y = ŷ will have
the same length (as seen in Figure 1a), and the bracket-shaped paths are the
farthest paths of that length from the obstacle. Note that a direct path qualifies
as a bracket with ŷ = 0.

The only variation in the paths is how far away from the obstacle they are,
i.e. their ŷ values. In this section we seek a relationship between the model
parameters P , A and σ and the resulting distance of closest approach, ŷ. In order
to cause the optimal path have to a smaller value of ŷ, the obvious strategies
are to decrease the costs (decrease A or σ) or to increase the path constant P .
This is generally true, but there exist certain conditions in which incrementally
changing the parameters in this way will result in a drastically different path.

For instance, one would expect that increasing P incrementally would result
in a gradual decline in ŷ. However, the resulting change sometimes is a discon-
tinuous jump. Consider the paths in Figure 1b. With A = 98 and σ = 100, when
P is increased from 55 to 56, one would expect ŷ to undergo a small decrease.
Instead, the path jumps suddenly through the origin (ŷ = 0). There is, in fact,
no value of P which causes the optimal path to occur between these two paths.

4.1 Theory

Our goal is to show why there are certain parameters that result in one of three
behaviors: (1) Minimum path cost is at ŷ = 0 (2) Minimum path cost is at finite
ŷ > 0 (3) Minimum path cost is infinitely far away. The cost of a bracket path
in terms of the model parameters and some choice of ŷ is

C(pŷ) =C(segment 1) + C(segment 2) + C(segment 3)

=
[
ŷP +

ŷ−1∑
i=0

f(−n, i)
]

+
[
2nP +

n∑
x=−n

f(x, ŷ)
]

+
[
ŷP +

ŷ−1∑
i=0

f(n, i)
]
.
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Now let us assume that we begin far from the obstacle, so n � σ. In this
limit, the cost due to the obstacle on segments 1 and 3 is very small compared
to the baseline cost and the cost along segment 2.

C(pŷ) ≈ (2n+ 2ŷ)P +

n∑
x=−n

f(x, ŷ) (3)

We are only concerned with the cost of each path in relation to other paths,
so we will express the cost of some pŷ relative to the cost of the direct path.

∆C(ŷ) =C(ŷ)− C(0)

=
[
(2n+ 2ŷ)P +

n∑
x=−n

f(x, ŷ)
]
−
[
(2n+ 2(0))P +

n∑
x=−n

f(x, 0)
]

=2P ŷ +

n∑
x=−n

[
f(x, ŷ)− f(x, 0)

]
When ∆C(ŷ) < 0 for some ŷ, the direct path is not optimal.
With a Gaussian obstacle as f ,

∆C(ŷ) =2P ŷ +

n∑
x=−n

[
A exp

(
−x

2 + ŷ2

2σ2

)
−A exp

(
− x2

2σ2

)]
We have already assumed n � σ, the tails of the Gaussian will contribute

negligibly, so we can approximate the sum over x ∈ [−n, n] as the sum over all
x, which has a simple solution. We use the following approximation.

n∑
x=−n

A exp

(
− x2

2σ2

)
exp

(
− y2

2σ2

)
≈

∞∑
x=−∞

A exp

(
− x2

2σ2

)
exp

(
− y2

2σ2

)
= Aσ

√
2π exp

(
− y2

2σ2

)
Finally, we have a closed-form expression for the cost of bracket path pŷ

compared to the direct path.

∆C(ŷ) = 2P ŷ +Aσ
√

2π

[
exp

(
− ŷ2

2σ2

)
− 1

]
(4)

Now, we locate the ŷ that minimizes ∆C(ŷ).

d∆C

dŷ
=2P − ŷ

σ
A
√

2π exp

(
− ŷ2

2σ2

)
= 0 (5)

P

A
=

√
π

2

ŷ

σ
exp

(
− ŷ2

2σ2

)
(6)
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(a) P/A =√
π/2e: The

direct path ŷ = 0
minimizes ∆C.

(b) P/A = 0.57:
A new global
minimum is
established at
ŷ > 0.

(c) P/A < 0.57.
ŷ moves far-
ther from the
origin, and the
minimum grows
deeper.

(d) P = 0, and
the global mini-
mum is at ŷ →
∞.

Fig. 2: Cost ∆C relative to the cost of the direct path, as a function of ratio of
the baseline cost-per-step P and the amplitude A of a Gaussian obstacle. The
minimum of this function determines where the optimal path is.

The solution for ŷ is related to the Lambert W-function 4, which cannot be
written in closed form. Depending on the cost ratio P/A, it admits 0, 1 or 2
solutions. We can make several observations.

1. Eq. 6 peaks when ŷ/σ = 1, attaining P/A =
√
π/2e. If we set P and A

such that P/A >
√
π/2e ≈ 0.760, there is no solution to Eq. 6, and the only

minimum of ∆C occurs on the boundary at ŷ = 0 like in Figure 2a. The
direct path is optimal.

2. For values of P/A less than .760, the inflection point at ŷ/σ = 1 decreases
as well, creating a local minimum. This minimum remains a local minimum
until P/A ≈ 0.57 (Figure 2b), a point we determined numerically where
the minimum becomes the global minimum. For values even less than 0.57
(Figure 2c), the direct path is no longer optimal and the center of the obstacle
is avoided.

3. When P = 0, ∆C(ŷ) has a minimum at infinity (Figure 2d). This results in
the path being as far away from the center of the obstacle as possible.

Thus, we have shown, with some simplifications, the mathematical under-
pinning for the relationship between the different parameters and why certain
configurations lead to the three behaviors/values of ŷ discussed at the beginning
of this section.

5 Results from Simulation

To further explore the relationships between the parameters, we ran path plan-
ning algorithms over simulated costmaps as described in the Problem Statement
section. Instead of showing all of the paths for each configuration, we represent
the resultant ŷ values in heatmaps as seen in Figure 3. As is evident from Equa-
tion 6, P and A are inversely related, a fact we could have surmised through

4 See http://en.wikipedia.org/wiki/Lambert_W_function

http://en.wikipedia.org/wiki/Lambert_W_function
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(a) Four Connected (b) Eight Connected (c) Two Gaussians

Fig. 3: Heatmaps - The value of ŷ as a function of P/A and σ. Black values
represent paths where ŷ = 0; white values represent paths where ŷ is infinitely
far away. Redder values indicate higher values of ŷ and bluer values represent
lower values.

dimensional analysis. As long as the ratio P :A remains constant, the value of ŷ
also remains constant (plots not shown). This means we can explore the entire
parameter space as a two dimensional heat map relating that ratio to σ, which
we did by varying the value of P .

The three distinct behaviors are seen in the different colorations. Configura-
tions represented in black result in paths that move straight through the obstacle
(ŷ = 0). On the opposite side of the spectrum, white configurations represent
paths that are as far away as possible, i.e. the optimal ŷ is infinitely large. The
intermediate hues represent the finite values of ŷ > 0, with red values being the
farthest away and blue values being the closest (smallest ŷ).

Let us begin the discussion with Figures 3a and 3b. Figure 3a was created
using the von Neumann neighborhood (i.e. four connected) and corresponds
with the math from the previous section. Figure 3b utilized the Moore neighbor-
hood (i.e. eight connected), and thus the properties from the previous section
need no necessarily apply. However, as evident in the two figures, both the von
Neumann and Moore neighborhoods operate similarly, although with slightly
different scaling. This lends substantiative support to our hypothesis that the
properties operate similarly regardless of the precise path planning implementa-
tion used.

The next thing to note is the relationship between σ and ŷ for a given P/A.
For any given finite positive value of ŷ we can decrease the variance to get
a smaller ŷ. This leads us to our first general observation about the parameter
space. Decreasing the variance on a Gaussian will always lead to paths
closer to the obstacle. Similarly, we can assert that Lowering the ratio
P : A will always increase ŷ from a positive value to a greater value.

However the inverse of these statements is not true. Increasing the variance
will sometimes increase the distance from the obstacle, but can also lead to de-
creasing the distance down to ŷ = 0. Increasing the variance on a Gaussian
will only sometimes result in paths further from the obstacle. Increasing
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P : A will always lead to to decreased ŷ values, however, at some point, those
values jump to ŷ = 0. This discontinuity means that For a given σ, some
values of ŷ cannot be expressed. If this were not the case, the right-hand
edge of the colored areas in the heatmaps would be blue for the lowest ŷ. Sim-
ilarly, some values of ŷ cannot be expressed for a given ratio P : A. These two
limitations lead to the most important observation about the parameter space:
Finding paths with the full range of ŷ values cannot be achieved by
tuning just one parameter.

This point is reiterated by the fact that there are some values of P : A that
do not have any values of σ resulting in ŷ > 0. Our simulated experiments also
validated that these dead zones occur when P : A > 0.57 when the grid is four-
connected, which can be seen in Figure 3a and since these values result in no
solution to Equation 6. Values of P/A < 0.57 generally result in non-zero ŷ,
until the variance gets sufficiently large, which is where our initial assumption
that n >> σ breaks down, resulting in unpredictable behavior. Based on the
results shown in Figure 3b, we have further estimated that for eight connected
neighborhoods, the dead zone starts with P/A > 1.4.

6 Results using ROS Navigation

Much of this work is motivated by our experiences with the ROS navigation
stack [10]. Initially, it did not have a way to directly input non-lethal obstacles,
which made it difficult to model people’s personal space. In a branched version
of the software, we removed this limitation[8]. In the costmaps, the amplitudes
can range from [0, 254] with no limits on the variance. However, initially we
were unaware that the default path planning constant was set so that P = 50,
meaning that our options for A were limited, and we found it difficult to tune
the parameters to get the passing distances we desired.

To further validate the principles in this paper, we used ROS navigation stack
with real sensor data from Willow Garage’s PR2. Paths were planned around
a live human using a modified wavefront planner that performs interpolated
gradient descent to determine a smooth path, i.e. not constrained to either the
von Neumann or Moore neighborhoods. The results are shown in Figure 4 with
three different values of A. As A increases, the value of ŷ increases too, but then
when A is very large, it contracts back down to ŷ ≈ 0, as close to the person as
possible. The full heatmaps are not included for space.

We found that even using the less restrictive planner, the same principles
apply, although the constants have different values. Since costmaps and the
discretized paths they produce are all approximations of the same continuous
space, it is logical that the different grid connectivities would have similar results;
however, it is nice to have the technical confirmation to back up the ideas. Not
only is the solution more general, but it has the added benefit that the resulting
smoother paths are more legible to people observing the robot.
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Fig. 4: Results using ROS Navigation, σ = 1.75, and P/A = {3/3, 3/60, 3/235}

7 Discussion

As robots require more and more social behaviors, it will be necessary to precisely
design systems where the robot will navigate in a particular way. With this in
mind, it is worth considering the placid assumption that the Gaussian costmap
addition is the ideal tool for the job. In particular, the existence of the large
dead zone where small changes to the parameters will have no effect on the path
and the discontinuities when configuring just one parameter, together present
numerous challenges to tackle when configuring a system. Additional and more
complicated cost functions may alleviate some of the problems. Figure 3c shows
the heatmap when using the sum of two Gaussian functions. This particular
example creates greater range for ŷ for small variances, but has its own problems
with discontinuities. This is clearly not the only other option, and we advise that
designers of new cost functions use the techniques in this paper to test their new
functions.

The choice of costmap approach is vitally important for social navigation.
The Gaussian adjustment explored in this paper are certainly better than no
costmap modifications. However, in tight environments like narrow hallways (as
we encountered previously[8]), the optimal ŷ for a given set of parameters may
result in an invalid path that collides with other obstacles. Limiting the ŷ value
means only considering the smallest values of ŷ/σ in Figure 2b, and thus the
robot may end up taking the most direct path, moving uncomfortably close to
the person. In accordance with the study of proxemics, a robot which mostly
drives far away, but sometimes moves into a person’s intimate personal space
seems much worse than a robot that always drove a medium distance away. This
led to our decision not to use Gaussians in that experiment.

As a final note, social robots need to take many metrics into consideration
to find the paths that will be best suited for interacting with humans. We do
not claim that the sole definition of “best” path relies upon just path length and
closest distance to an obstacle. Finding the best cost functions, and planners
that optimize a wide variety of metrics, will likely see much fruitful work in the
coming years.
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