Towards More Efficient Navigation for Robots and Humans

David V. Lu and Bill Smart

Traditional Navigation Objectives

Don't hit things

plan paths that avoid obstacles

Take the shortest path

travel close to obstacles without hitting them

Efficient algorithms

heuristics and greedy algorithms

Don't scare the humans

subjective evaluations of friendliness

Social Navigation

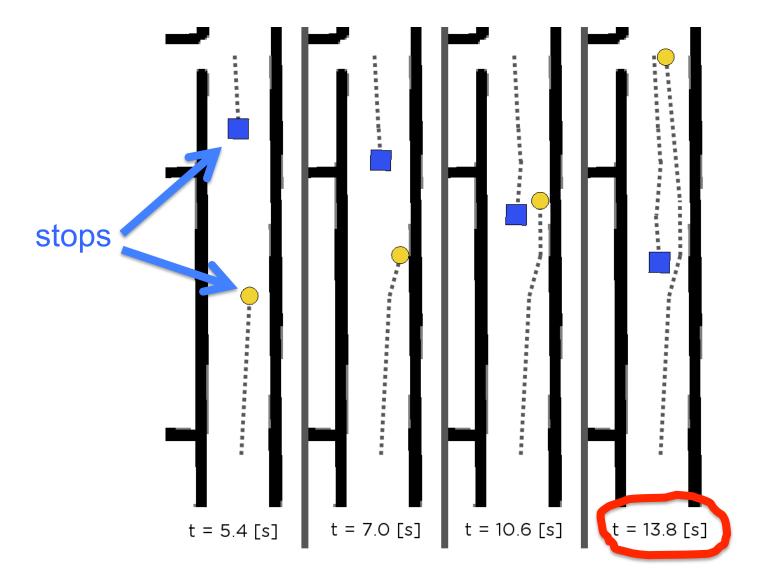
People are not obstacles

- proxemics
- social norms

People react to robots

- robots navigate around people
- people navigate around robots

Our Goal


Effective navigation for both robot and human

- both get to their goal faster
- avoid awkward social moments
- understand how to prioritize when needed

Contextual navigation

- sometimes robot gets priority
- sometimes human gets priority
- navigation algorithm can adapt on-line

An Example: Passing in a Corridor

Can We Improve on This?

Social navigation behavior

- obey social norms
- pass on right
- implement using standard costmap

Social cues from robot

- make eye contact with person
- confirm they have been seen

The Experiment

Robot and person pass in corridor

Two navigation conditions

- standard
- social

Two gaze conditions

- none
- looks at person

Social Navigation Condition

Uses standard navigation system

- only manipulates costmap

Costmap gradient reflects social norms

- slightly cheaper on right side of corridor
- linear gradient, not Gaussian as commonly used
- contextual and easier to design than social forces

Treat humans differently

- preserve social distances

Gaze Condition

Make "eye contact" with person

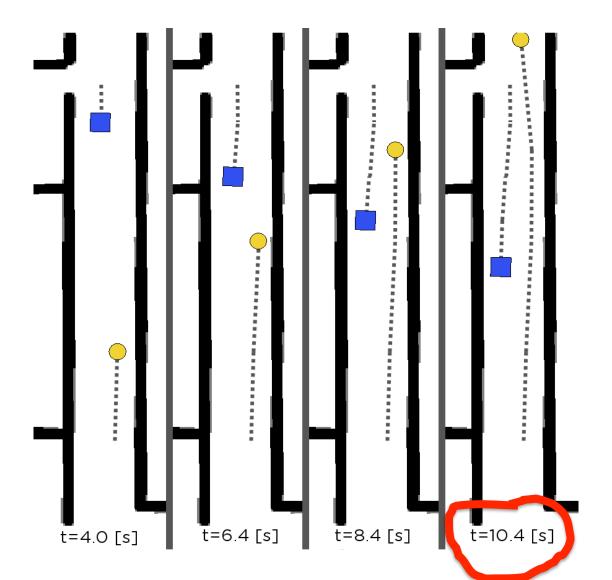
- look up from navigation
- point robot's head at person's head
- then look away after two seconds

Implementation

PR2 using ROS

- using new navigation stack
- layered costmaps
- code available in ROS Hydro release

Experiment


2x2 design

N = 30

180 individual trials

3 discarded due to failures

Results: Social Navigation Helps

Results: Social Navigation Helps

Signaling distance is higher

- human interprets robot's intent earlier
- both get out of the way before they meet

Robot and human are both faster

- neither needs to slow down

Hypotheses

- faster with social navigation
- faster with gaze cues

Results: Gaze Doesn't Help

People misinterpreted eye contact

- thought that robot as initiating an explicit interaction
- they stopped and waited for it to interact
- sometimes seemed confused when it didn't

Might be novelty effect

- subjects knew they were in an HRI experiment
- were probably expecting an "interaction"
- might not think of passing in corridor as interaction

Final Thoughts

Robot behavior changes people's behavior

- not always in the ways you predict in advance

Social navigation makes navigation better

- for the combined human-robot system
- often for both individually

Interpretation of gaze is a subtle thing

- people react based on context
- context is also a subtle thing

David Lu davidlu@wustl.edu

Bill Smart bill.smart@oregonstate.edu

