
Layered Costmaps for Context-Sensitive Navigation

David V. Lu, Dave Hershberger, and William D. Smart

Abstract— Many navigation systems, including the ubiquitous
ROS navigation stack, perform path-planning on a single
costmap, in which the majority of information is stored in
a single grid. This approach is quite successful at generating
collision-free paths of minimal length, but it can struggle in
dynamic, people-filled environments when the values in the
costmap expand beyond occupied or free space.

We have created and implemented a new method called
layered costmaps, which work by separating the processing of
costmap data into semantically-separated layers. Each layer
tracks one type of obstacle or constraint, and then modifies a
master costmap which is used for the path planning. We show
how the algorithm can be integrated with the open-source ROS
navigation stack, and how our approach is easier to fine-tune
to specific environmental contexts than the existing monolithic
one. Our design also results in faster path planning in practical
use, and exhibits a cleaner separation of concerns that the
original architecture. The new algorithm also makes it possible
to represent complex cost values in order to create navigation
behavior for a wide range of contexts.

I. INTRODUCTION

Navigation algorithms have become increasingly sophisti-
cated over the decades. They can process large amounts of
sensor data to keep track of the locations of obstacles and
free space with great accuracy. Combined with the right path
planners, they can navigate robots around their environments
with great skill. However, many of these navigation algo-
rithms suffer from the same problem: the algorithms optimize
based on the single constraint of finding efficient collision-
free paths.

Such an algorithm is fine for many use cases, or for
navigation in the abstract, if all that matters is getting from
point A to point B. It is not sufficient for other use cases.
For robots moving in dynamic environments populated with
people, more complex constraints need to be integrated into
the optimization. Moving from one point to another is just
one part of a larger context. It is not enough that a robot
moves around an obstacle just to avoid a collision; the robot
must treat that obstacle differently because of what it is
semantically. For example, driving a few centimeters away
from a table is perfectly fine in most cases. However, driving
that closely to a person is socially undesirable. Yet, if the
navigation algorithm treats all sensed obstacles equally, there
is no way for the path planner to be able to choose one path
over the other.

Lu is a PhD candidate in the Dept. of Computer Science at Washington
University, St. Louis, Missouri, 63130. davidlu@wustl.edu

Hershberger contributed to this work while he was a research scientist at
Willow Garage, Inc. Menlo Park, CA hersh@gmail.com

Smart is faculty in the Department of Mechanical Engineering, Oregon
State University. bill.smart@oregonstate.edu

Fig. 1. A stack of costmap layers, showcasing the different contextual
behaviors achievable with the layered costmap approach.

There are many additional scenarios, beyond respect-
ing people’s personal space, where choosing the shortest
collision-free path may not be optimal. Given information
about where people often are, a longer path that avoids
probable obstacles may be preferable. The robot must also
consider the utility of entering potentially hazardous areas,
such as kitchens, which are valid paths, but they come with
a cost. Even simple factors like driving on the right side of
a hallway will need to be considered. Which path the robot
takes will depend on having additional information about the
larger contexts.

The information about the environment that the path
planners use is stored in a costmap. In a traditional costmap,
all of the data is stored in the singular grid of values, in what
we term a monolithic costmap. The monolithic costmap has
been the prevailing technique because of its simplicity, in
that there is only one place to read values from and write
values to. One result of this is that a great deal of semantic
information about the values in the costmap is lost, which
makes proper maintenance of the costmap from cycle to
cycle more difficult.

In this paper, we introduce our solution for incorporating
the additional semantic information into costmaps, with
a new approach called layered costmaps. Using the ROS
Navigation framework as a starting point, we show that the
layered costmaps replicate the functionality of the previous
navigation algorithm, while adding the flexibility to handle



more contexts. Fig. 1 shows a possible configuration of
the layered costmap with different types of layers. We will
discuss the algorithm and data structure, and where they have
improved the previous approach. Then we will examine the
different layers that can be added to the costmap, both old
and new, and the environmental contexts that they integrate.

II. RELATED WORK

The focus of this work is on grid-based representations
used for path planning. The immediate ancestor of modern
costmaps is the occupancy grid, developed by Moravec and
others at CMU in the 1980s [1, 2]. The semantics of the
contained values is straightforward; each cell’s value is the
probability that there is an obstacle present, and thus the
update process is a straightforward application of Bayes rule.
Konolige [3] and Thrun [4] improved the probability model
to better localize obstacles.

The grid-based costmap approach (where the grid values
are not probabilities but costs), has proven useful especially
when the location of the obstacles is easier to pin down (i.e
not using sonar). In the past, these approaches have primarily
focused on binary costmaps, where the cell is either occupied
or free space. Now more complex costs are being added to
the costmap, resulting in trickier semantics for the values
in the costmap. These non-lethal costs, with values between
the occupied and free, typically represent soft constraints.
Autonomous vehicles used such values to optimizing for
driving on the correct side of the street and other preferential
driving behaviors[5]. Gerkey and Agrawal [6] represented
different types of terrain and their traversability with different
costs in the costmap. The soft constraints are also used
for human-robot-interaction-based constraints. The costmap
system by Sisbot et al. [7] took into account peoples’
personal space and fields of vision, as did Kirby et al. [8] who
also modeled social behaviors like passing on the right. Even
more complicated cost methods for people-aware navigation
were developed by Svenstrup et al. [9] and Scandolo and
Fraichard [10].

III. THE MONOLITHIC COSTMAP

The monolithic costmap, with all of the data stored in
a single grid of values forms the basis of most costmap
implementations being used, including the ubiquitous ROS
[11] Navigation Stack. In this paper, we focus on the ROS
Navigation algorithm and implementation since it is a widely
used and runs on dozens of robot hardwares1. It uses a
monolithic costmap for global planning, and another for local
planning.

The monolithic costmaps have proven effective at calcu-
lating the minimal-length collision-free paths. Writing initial
values into the costmap is straight-forward, but with the
limited storage space, the update process is problematic, lim-
iting the types of achievable functionality and on costmap’s
efficiency and extensibility. The main weaknesses of the
monolithic costmap approach are as follows.

1wiki.ros.org/navigation/RobotsUsingNavStack

1) Limited Information During Update Step: One major
limitation of monolithic costmaps is that most of the informa-
tion in the costmap is stored in one location. Consider the
relatively simple example of a conflict between the sensor
data and the values already in the global costmap. The
sensor data indicates that a certain area is clear, while the
costmap indicates there is an obstacle. The correct method
for updating the costmap depends on the origin of the data
and additional semantic information. One scenario might be
that the previous values indicated a prior position for a person
who has now moved. Then, the correct behavior may be to
overwrite the lethal values in the costmap with the new free
values, allowing the robot to pass through the newly vacated
space. However, an equally valid scenario is that the values in
the costmap originate from the static map, which was created
to include obstacles that cannot be seen by the sensors, such
as glass walls. In that case, the lethal values should stay in
the costmap.

It is impossible to differentiate these two cases in a
monolithic costmap, as both present as lethal values in the
costmap. Any semantic data for what the values in the
costmap represent is stripped from the data as soon as it
is reduced to a single value in the costmap.

This is also problematic for properly handling three-
dimensional obstacle data. The original developers of the
ROS implementation encountered this problem when they
used three-dimensional sensors like a tilting laser range
finder. If the obstacle data is stored only in the mono-
lithic costmap, obstacles at different heights could be in-
appropriately removed by clearing observations. Thus, they
introduced voxel grids to keep track of the additional
information[12]. The solution works for extending the mono-
lithic costmap’s functionality in this one use case, but does
not generalize.

The limited information becomes more problematic as the
number of data sources and types for the costmap increases.
Consider when there are multiple non-lethal data sources,
each with an individual semantic meaning. If the values are
added together in the monolithic costmap, a change to one of
the values will result in each of the individual values needing
to be recalculated.

2) Fixed Update Areas: The lack of semantic information
in the monolithic costmap also makes it difficult to tell how
long any particular cost value has been in the costmap.
Hence, if the updated area needs post-processing or to be
published to some external source, there is no established
way to determine the scope of the most recent updates. An
ineffective way to deal with this problem is to conservatively
estimate a swath of the map that covers the entire area that
could have been updated, which is what the ROS implemen-
tation does. In practice this means updating a roughly 6m x
6m square around the robot, regardless of how much of that
space was actually updated.

3) Ad-hoc Update Process: The lack of an established
paradigm for maintaining and updating a costmap results in
implementations that take an ad-hoc approach. This method
has worked thus far due to the relatively small number of

wiki.ros.org/navigation/RobotsUsingNavStack


data sources used in practice, but it becomes infeasible as
the number of sources increases. In order to ensure that the
data is combined in the correct way, every data source needs
to be aware of every other data source.

Even in the prior work that define useful algorithms
for calculating costs, the process that they use to actually
integrate them with their full costmap is usually opaque.
Without the information about how precisely costmaps are
updated, accurately replicating results becomes impossible.

4) Semantically Fixed Interpretation: In addition to lim-
iting the amount of information that costmaps contain,
monolithic costmaps also constrain the types of information
that can be used. The monolithic costmap also only affords
a single interpretation of the values in the costmap. The
original occupancy grid definition of costmaps used a proba-
bilistic interpretation. Alternatively, the value could represent
some cost/penalty for being at a certain location. With the
monolithic costmap, it is ambiguous how to combine a
probabilistic data source with a cost-based one.

The ROS costmap implementation has additional problems
since the only type of information it accepts is binary
obstacle data, i.e. where there are definitely obstacles or there
is definitely free space. Adding non-lethal costs does not fit
into its monolithic framework. With just one data-type in the
costmap, the information is semantically fixed.

IV. LAYERED COSTMAPS

A. Data Structure and Update Algorithm

To counteract the limitations introduced in the previous
section, we devised the layered costmap. The data structure
still contains a two-dimensional grid of costs that is used
for path planning. The key difference is how the values of
this master costmap are populated. Instead of storing data
directly in the grid, the layered costmap maintains an ordered
list of layers, each of which tracks the data related to a
specific functionality. The data for each of the layers is then
accumulated into the master costmap, which takes two passes
through the ordered list of layers.

In the first pass, the updateBounds method, each layer
is polled to determine how much of the costmap it needs to
update. The layers are iterated over, in order, providing each
layer with the bounding box that the previous layers need
to update (initially an empty box). Each layer can expand
the bounding box as necessary. This first pass results in
a bounding box that determines how much of the master
costmap needs to be updated. During the second pass,
the updateValues method is called, during which each
successive layer will update the values within the bounding
box’s area of the master costmap. Fig. 2 illustrates the update
algorithm using a set of layers that replicate the behavior of
a basic monolithic costmap.

Some layers will maintain their own version of the
costmap for caching results. This is one of the primary
ways the data structure maintains semantic information about
the data. For example, an obstacles layer keeps a private
costmap of the same size as the master costmap to store the
results of all previous ray-tracing and marking steps. Since

the values in the private costmap are only accessible to the
particular layer, the information stored within cannot be lost
by another data source writing over it. This in turn minimizes
how frequently the costmap must recalculate values that had
previously been overwritten.

Other layers do not require that much data to be kept from
cycle to cycle and will update the master costmap with their
data on each turn, or will simply operate on the data that
other layers have already written into the master costmap.

The example in Fig. 2 shows how the previous ad hoc
approach used to generate the costmap can be refined into
a neat, well-defined process. A more precise explanation of
how each layer changes the master costmap is in section VI.

B. Benefits

The layered costmap approach specifically addresses the
limitations of the monolithic costmap.

1) Clearer Update Step: Different types of costmap infor-
mation are added to separate layers in the layered costmap
approach, making the update step more clearly delineated.
If the desired behavior included the ability to treat static
obstacles, sensed laser obstacles and sensed sonar obstacles
differently, storing those obstacles in their own layers sim-
plifies the bookkeeping substantially. Each layer only needs
to keep the information consistent with other information of
the same type.

The layered costmap also eliminates contention between
the competing costmap information sources. Each layer only
needs to be updated as new information of that type comes
in. If a layer remains largely static, it does not need to
be recalculated each time another layer updates some sub-
area. The static layer merely needs to update into the master
costmap and the update can move on to the next layer.

This clearer separation of concerns also makes the indi-
vidual components of the costmap easier to tune. Initial users
can introduce one layer at a time and debug each in turn.

2) Dynamic Update Areas: As opposed to the fixed or un-
known regions that are updated on each round of updates in
the monolithic costmaps, by virtue of the updateBounds
pass through the layers, the layered costmap only updates the
region of the map that the individual layers deem necessary.
This gives the costmap extra stability, guaranteeing that only
values within the bounding box are updated. Furthermore,
it can potentially be more efficient by updating smaller
amounts of the map.

3) Ordered Update Process: As opposed to the undefined
order in which elements in the monolithic costmap were
updated, the layered costmap has an explicit ordering. In
our example, it is clear that the inflation layer will inflate
values from both the obstacles and static layers by virtue
of the inflation layer coming after the other two in the
ordered list. Furthermore, the interactions between layers
are explicitly specified. Each costmap can be configured
to combine the previous value and the layer’s value as a
maximum, minimum or some other mathematical function
of the two.



(a) Initial Costmap Values (b) UpdateBounds (c) UpdateValues: Static (d) UpdateValues: Obstacles (e) UpdateValues: Inflation

Fig. 2. Update Algorithm - In (a), the layered costmap has three layers and the master costmap. The obstacles and static layers maintain their own copies
of the grid, while the inflation layer does not. To update the costmap, the algorithm first calls the updateBounds method (b) on each layer, starting
with the first layer in the ordered list, shown on the bottom. To determine the new bounds, the obstacles layer updates its own costmap with new sensor
data. The result is a bounding box that contains all the areas that each layer needs to update. Next, each layer in turn updates the master costmap in the
bounding box using the updateValues method, starting with the static layer (c), followed by the obstacles layer (d) and the inflation layer (e).

4) Flexible Configurations: Finally, and most importantly,
the capabilities of the layered costmap approach are endless.
The layers needed to implement an equivalent set of behav-
iors to the previous implementation are only the beginning.
As many layers as the robot operator desires can be added
to the layered costmap. The result is that the individual
layers can implement arbitrarily complex logic for updating
the costmap, expanding the costmap’s semantic possibilities.
Each of the layers can also have its own independent repre-
sentations of the data, such that probabilistic occupancy grids
can exist in their own layers alongside cost-based layers.

V. COMPARISONS

A. Implementation Specifics

Although the algorithm and data structure for layered
costmaps are system-agnostic, due to the ubiquity of the
platform, we focused on implementing the system to work
with the ROS Navigation stack in order to demonstrate the
capabilities of the approach. The layered costmap implemen-
tation keeps the costmap 2d API mostly in tact and like
the rest of the navigation code, is implemented in C++, as
are each of the layers.

Implementing a layer is quite easy. First, a new class
must be created which extends the costmap 2d::Layer
class. This means implementing the initialize func-
tion (where the layer can independently subscribe to any
data sources in the ROS ecosystem), the updateBounds
function and the updateCosts function. Independently
compiled layers can be plugged in to the layered costmap
with simple run-time parameter changes.

Whereas previously the costmap class had special cases to
deal with whether there was a static map or not, or whether
to track the obstacles in three dimensions, these cases are
instead handled by configuring the global and local costmaps
with different layers.

The two implementations of costmaps were run through
repeated simulated trials in Gazebo scenarios. The robot em-
ployed was the PR2, as was used in the initial benchmarking
of ROS navigation[12]. After hundreds of simulations, we
found no noticeable difference between the paths generated
by the two implementations, with regard to path length, time
to completion and relation to obstacles.

B. Timing Comparison

One of the most critical statistics we analyzed was the
average runtime of the costmap update cycle. Due to the
speeds at which the local planning needs to run and adjust
to new obstacles, the update process must be quite quick.
The standard we aimed to achieve was an update frequency
of at least 5 Hz (as had been used by the previous im-
plementation), capping the individual cycle runtime at 0.2
seconds. The monolithic costmap was able to exceed that by
an order of magnitude or two, depending on the specifics
of the environment and the system running the costmap.
The layered costmap implementation also depends on these
variables. Ultimately, the layered implementation runs faster
in certain scenarios and slower in a few corner cases.

In our simulations, the average update times for the global
costmap were 0.00166 and 0.00236 seconds for the mono-
lithic and layered implementations respectively, and for the
local costmap, the update times were 0.00493 and 0.00463
seconds respectively. Using a one-sided t-test, we found no
significant difference in the average local update time. The
global update time is significantly slower with the layered
costmap (p<0.001). However, we determined that this was
the result of a sparse simulated environment. In those simula-
tions, the robot was placed in a completely open environment
except for a single, relatively small obstacle between the
robot and its goal. Thus, the robot’s laser readings extend
to their maximal distances in most directions, resulting in a
large area that the layered implementation needs to update.



Fig. 3. Update Time vs. Update Area - Since the size of the updated
area stays constant with the monolithic implementation, the timing stays
roughly constant. However, the updated area varies with the layered costmap
implementation, so the timing changes as well.

This area needs to be updated by each layer, slowing down
the overall update speed.

We also simulated the robot in more cluttered environ-
ments, in which the robot was surrounded on all sides by
walls at set distances away. With walls very close to the
robot, the update area is much smaller. As seen in Fig. 3, in
this scenario, the layered costmap is faster. As the updated
area grows, the monolithic implementation’s update time
stays roughly constant, whereas the layered costmap’s update
time grows to match the increasing number of cells to update.
Given that the costmap system is designed for working in
cluttered, fast-changing environments, the layered costmap’s
speed in those environments are more relevant.

C. Navigating the Real World

In addition to our thorough simulated tests, we also
tested the layered costmap on the PR2 platform in the real
environments. The tests were primarily performed in the
office environment at Willow Garage. Using the layers to
mimic the monolithic costmap structure, the PR2 was able
to successfully replicate all the path planning behavior of the
previous implementation. However, the more exciting results
occurred when we modified the layers to get behavior that
was impossible with the monolithic costmaps.

First, by separating the static and obstacle layers, we
controlled whether the obstacle layer had the power to
overwrite the static map. As mentioned in section III, the
monolithic costmap navigation could improperly clear parts
of the static map, leading to the robot planning a path that
moved through a solid wall. By only allowing the obstacle
layer to ray-trace and clear the sensed obstacles (and not
those in the static map), the wall never was cleared from the
master costmap, eliminating the embarrassing wall-charging
behavior.

The introduction of new layers also enables new previ-
ously impossible behavior. The motivating use case behind
our investigations of the costmap was to create socially-
aware robot navigation similar to the works cited in sec-
tion II. We successfully integrated such a layer into the PR2’s
path planning2. The details of the new layer and other layers
we created are elaborated upon in the following section.

2As seen in this video: youtube.com/watch?v=Pzx0yyEcfgI

VI. THE LAYERS

Beyond the functionality that allows the layered costmap
to replicate other costmaps, its main virtue is the ability to
easily integrate additional layers which will be treated in
the same way as the other elements of the costmap. These
additional layers give the costmap the ability to represent
information from many varied contexts and generate motion
that reacts appropriately to those contexts.

A. Standard Layers

Static Map Layer: In order to perform global planning,
the robot needs a map that reaches beyond its sensors to
know where walls and other static obstacles are. The static
map can be generated with a SLAM algorithm a priori or
can be created from an architectural diagram.

When the layer receives the map, the updateBounds
method will need to return a bounding box covering the
entire map. However, on subsequent iterations, since it is
static after all, the bounding box will not increase in size.
In practice, the static map has been the bottom layer of the
global costmap, and thus it copies its values into the master
costmap directly, since no other layers will have written into
the master before it.

If the robot is running SLAM while using the generated
map for navigation, the layered costmap approach allows
the static map layer to update without losing information in
the other layers. In monolithic costmaps, the entire costmap
would be overwritten.

Obstacles Layer: This layer collects data from high accu-
racy sensors such as lasers and RGB-D cameras and places it
in a two dimensional grid. The space between the sensor and
the sensor reading is marked as free, and the sensor reading’s
location is marked as occupied. During the updateBounds
portion of each cycle, new sensor data is placed into the
layer’s costmap, and the bounding box expands to fit it.

The precise method that combines the obstacles layer’s
values with those already in the costmap can vary, depending
on the desired level of trust for the sensor data. Previously,
the default behavior was to overwrite the static map data with
the sensor data. This was most effective in scenarios where
the static map may be inaccurate, and is still available in
the layered approach. However, if the static map is more
trustworthy, then the layer can be configured to only add
lethal obstacles to the master costmap.

Voxels Layer: This layer has the same function as the Ob-
stacles Layer, but tracks the sensor data in three-dimensions.
The three dimensional voxel grid, introduced in Marder-
Eppstein et al. [12] allows for more intelligent clearing of
obstacles to reflect the multiple heights at which they can be
seen.

Inflation Layer: As discussed earlier, the inflation process
inserts a buffer zone around each lethal obstacle. Locations
where the robot would definitely be in collision are marked
with a lethal cost, and the immediately surrounding areas
have a small non-lethal cost. These values ensure the robot
does not collide with lethal obstacles, and prefers not to
get too close. The updateBounds step increases the previous

https://www.youtube.com/watch?v=Pzx0yyEcfgI


bounding box to ensure that new lethal obstacles will be
inflated, and that old lethal obstacles outside the previous
bounding box that could inflate into the bounding box are
inflated as well. The updateValues step operates directly on
the master costmap, without storing a local copy.

B. New Functionality

Sonar Layer: Monolithic costmaps are capable of han-
dling sonar data, but layered costmaps increase the options
for how to deal with it. Dedicating a layer to sonar readings
can avoid problems with glass walls being cleared out by
laser observations. Furthermore, we can also use this layer to
treat sonar data differently than the high accuracy obstacles
layer. The sonar layer we built implements a probabilistic
sonar model and updates the costmap using Bayesian logic.
We can then set a cutoff probability in which we only
write data that we are relatively sure about into the master
costmap. Note that this approach allows us to maintain the
semantic meanings of the probabilities without having to
directly combine them with the costs.

Caution Zones Layer: This layer gives us the ability to
specify areas of the robot environment with greater detail
than free/occupied. Despite being free of obstacles, most
robots will want to avoid navigating into stairwells leading
down. Or perhaps the robot should never navigate into
a particular person’s office. There are numerous scenarios
where operators will want to restrict where the robot can
safely drive, despite appearing navigable. One technique
seen in practice for these restrictions is to mark obstacles
on the static map. This technique can work, but removes
information from that map that might be needed for other
applications, such as AMCL. This layer also affords us the
ability to mark zones that are not necessarily forbidden, but
not desirable. Adding a non-lethal cost to a kitchen can
ensure the robot does not drive near hazardous liquids unless
there is no other option. These zones can also be used for
areas where it would be socially less acceptable to be, such as
the space between a person and an object they are interacting
with, like a TV, as seen in Ferguson and Likhachev [5].

Claustrophobic Layer: The inflation layer adds a small
buffer around lethal obstacles, but the claustrophobic layer
adds a larger buffer to increase the relative cost of driving
close to obstacles. As a result, the robot would prefer to move
in wide open spaces as far from obstacles as possible, thus
maximizing the clearance to any sensed obstacles. This layer
would be useful for scenarios with more uncertainty about
the exact location of the robot relative to obstacles and the
odds or costs of driving into an obstacle are high.

C. Human-Robot Interaction Layers

As seen in the Section II, one of the primary motivations
for adding more complex costs to the costmap is for model-
ing constraints introduced by human-robot interaction.

Proxemic Layer: There has been a steady rise in the
study of the spatial relations between people and robots,
as well as methods for ensuring robots do not violate the
expected relations. The most common way this is done is

by adding Gaussian distributions, or mixtures of multiple
Gaussian distributions, to costmaps, as in Kirby et al. [8].
These adjustments create areas around detected people that
makes paths passing closer to people more costly, respecting
their proxemic concerns.

We created a proxemic layer which implements Kirby’s
mixture of Gaussians model. Using the location and velocity
of detected people (extracted from laser scans of the person’s
legs), the layer writes the Gaussian values for each person
into the layer’s private costmap, which are then added
into the master costmap. The values generated are scaled
according to two different parameters, the amplitude and
the variance. In general, as you increase these parameters,
the optimal path moves further from the person. However,
as discussed in [13], there is a limit to how high these
parameters can be changed before the optimal path changes
to be the shortest path. This means that tuning the parameters
in an attempt to get the robot to travel further away, the
opposite happens, which is socially suboptimal. The results
from [13] were replicated using fully simulated paths in the
Gazebo simulator.

We have also begun to implement layers based on the more
complex proxemic models mentioned in Section II. Some of
the models assume more information than a person’s location
and orientation, and our layer implementations assume they
are paired with robust enough sensor capabilities to detect
things like head and body pose.

Hallway Layer: In some cultures, there is the custom of
walking on the right side of pathways, much in the same way
drivers in many countries stay to the right side of the road.
We implemented a layer that determines whether the robot
is in a hallway and dynamically will increase the cost on
the left side of the hallway to have the robot prefer the right
side. We used a similar model in a recent user study [14]
where the layer changed costs to make the robot to prefer
navigating on the opposite side of the corridor as the closest
person to it (which was often the right side). The addition
of this layer was shown to not only effectively move the
robot to one side of the hallway, but also to make the person
behave more effectively during the interaction.

Wagon Ruts Layer: If the robot aims to avoid being
socially invasive and minimize unexpected obstacles, one
effective strategy could include mimicking human traffic
patterns. This layer can decrease the cost of paths that people
have traveled on, resulting in the robot’s optimal path to
follow them as well. You could also reverse the polarity of
the costs, and increase the value in areas where people often
are in order to minimize social disruption.

VII. DISCUSSION

In this paper, we have discussed the benefits of the new
layered costmap model over the previous monolithic model.
Due to its efficiency and extensibility, an implementation
of it has been adopted as the default navigation algorithm
for the all released versions of ROS starting with Hydro,
the source code for which can be found at github.com/ros-
planning/navigation. All of the code for the additional layers

http://github.com/ros-planning/navigation
http://github.com/ros-planning/navigation


can found linked to from wiki.ros.org/costmap 2d. Further-
more, based on the plugin-based layer structure, we hope that
the new developments in creating additional costmap rules
will be implemented as layers and tested within the ROS
navigation framework, allowing for more open exchange
of algorithmic behavior and more accessible comparisons
between them.

The layered costmap and the associated layers open up the
possibility for a wide range of additional robot behaviors.
As more layers are assimilated into the planning algorithms,
the robots will become more aware of different facets of
their environment, and take those contexts into account
while navigating. The current state of the practice is just
to ignore the additional contexts, or tackle them one at a
time. While the layered costmap does enable the contexts to
be integrated, we predict that the future challenge will be to
find a way to dynamically manage the collections of layers
in order to ensure the right contexts are prioritized at the
right times. Proxemic behavior dictates that personal space
should be respected, but precisely how much less efficient
the robot’s path should be as a result is an open question.
Half of the problem is designing costmap layers such that
the mathematically optimal path is the desired distance away.
The other half is a social question with unclear answers, of
how to balance the needs of robots against the needs of
people. While we can offer no concrete answers to such
a question, we believe that having a highly customizable
data structure for customizing robot behavior will make
answering such a question much easier.

REFERENCES

[1] L. Matthies and A. Elfes, “Integration of sonar and
stereo range data using a grid-based representation,” in
Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1988, pp. 727–733.

[2] H. P. Moravec, “Sensor fusion in certainty grids for
mobile robots,” AI magazine, vol. 9, no. 2, pp. 61–74,
1988.

[3] K. Konolige, “Improved occupancy grids for map build-
ing,” Autonomous Robots, vol. 4, no. 4, pp. 351–367,
1997.

[4] S. Thrun, “Learning occupancy grids with forward
models,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
vol. 3, 2001, pp. 1676–1681.

[5] D. Ferguson and M. Likhachev, “Efficiently using cost
maps for planning complex maneuvers,” in Proceed-
ings of the ICRA 2008 Workshop on Planning With
Costmaps, 2008.

[6] B. P. Gerkey and M. Agrawal, “Break on through:
Tunnel-based exploration to learn about outdoor ter-
rain,” in ICRA Workshop on Path Planning on
Costmaps, May 2008, Pasadena, California, 2008.

[7] E. Sisbot, L. Marin-Urias, R. Alami, and T. Simeon,
“A human aware mobile robot motion planner,” IEEE
Transactions on Robotics, vol. 23, no. 5, pp. 874–883,
2007.

[8] R. Kirby, R. Simmons, and J. Forlizzi, “COMPAN-
ION: A Constraint-Optimizing Method for Person-
Acceptable Navigation,” in Proceedings of the 18th
IEEE Symposium on Robot and Human Interactive
Communication (Ro-Man), Toyama, Japan, 2009, pp.
607–612.

[9] M. Svenstrup, S. Tranberg, H. Andersen, and T. Bak,
“Pose estimation and adaptive robot behaviour for
human-robot interaction,” in Proceedings of the IEEE
International Conference on Robotics and Automation
(ICRA), 2009, pp. 3571–3576.

[10] L. Scandolo and T. Fraichard, “An anthropomorphic
navigation scheme for dynamic scenarios,” in Proceed-
ings of the IEEE Internation Conference on Robtoics
and Automation (ICRA), 2011, pp. 809–814.

[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote,
J. Leibs, E. Berger, R. Wheeler, and A. Ng, “ROS: an
open-source Robot Operating System,” in ICRA Work-
shop on Open Source Software, Kobe, Japan, 2009.

[12] E. Marder-Eppstein, E. Berger, T. Foote, B. P. Gerkey,
and K. Konolige, “The Office Marathon: Robust Nav-
igation in an Indoor Office Environment,” in Proceed-
ings of the IEEE International Conference on Robotics
and Automation (ICRA), Anchorage, Alaska, 2010.

[13] D. V. Lu, D. B. Allan, and W. D. Smart, “Tuning Cost
Functions for Social Navigation,” in Proceedings of the
International Conference on Social Robotics (ICSR),
2013.

[14] D. V. Lu and W. D. Smart, “Towards More Efficient
Navigation for Robots and Humans,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

http://wiki.ros.org/costmap_2d

	Introduction
	Related Work
	The Monolithic Costmap
	Limited Information During Update Step
	Fixed Update Areas
	Ad-hoc Update Process
	Semantically Fixed Interpretation


	Layered Costmaps
	Data Structure and Update Algorithm
	Benefits
	Clearer Update Step
	Dynamic Update Areas
	Ordered Update Process
	Flexible Configurations


	Comparisons
	Implementation Specifics
	Timing Comparison
	Navigating the Real World

	The Layers
	Standard Layers
	New Functionality
	Human-Robot Interaction Layers

	Discussion

